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Convergence Behavior and Acceleration of the
Berenger and Leaky Modes Series Composing
the 2-D Green’s Function for the
Microstrip Substrate

Hendrik Rogier Member, IEEEand Daniél De ZutterFellow, IEEE

Abstract—The Green’s functions G4 and Gv are calcu- In [9]-[11], this approach is used to construct the Green’s
lated for a two-dimensional microstrip substrate by placing functionG,,, for a two-dimensional (2-D) configuration for the
the substrate into a closed perfectly-matched-layer waveguide TE polarization. In this paper, we will consider both TE and TM

d b formi dal ion in B d leak o . . .
?nnodesy Irt)?st gﬂmﬁ tﬁa{n eoaca;] :é(r‘i):: imﬁgsir%fnfﬂ gr‘lf hae: ay polarizations and derive modal series for the kernel functions

particular convergence behavior when considering small lateral G4 and Gy, often used in mixed-potential integral equation
distances between the excitation and the observation points. It approaches for multilayered structures. An important issue con-
is then demonstrated that, by applying the Shanks transform to  cerning the use of modal series involves the number of modes
accelerate each series separately, a more efficient calculation for aege to assure convergence of the series with a prescribed ac-
the Green’s functions can be obtained than by direct computation L . .
of the series. The theory is illustrated by means of a representative curacy. The contributions of this paper relatg to this convergence
example. issue. First, a thorough convergence study is made on all modal
series composing the Green'’s functigRg andGy.. Second,
the results of this study are then used to provide a series accel-
eration scheme by means of the Shanks transform.
In order not to complicate the matter too much, we will focus
. INTRODUCTION on a simple microstrip structure, and we chose a 2-D configura-
LTHOUGH the issue has been studied for quite a numbkgn. In order to develop our theory, we will make use of results
of years, the calculation of the Green’s functiofi, ©obtained in [15], where it was shown that one can distinguish
and Gy of a multilayered medium stills remains a difficultPetween leaky modes and Berenger modes in waveguides cre-
task. Yet, these kernel functions, associated with the vector &#gd by covering an open microstrip substrate with a PML. We
scalar potential of the problem, play a very important role in trfart by briefly repeating this theory in Section II. The main part
so-called mixed-potential integral equation descriptions [1]-[8f the paper involves a thorough study onif, and how;, the series
of planar circuits, often used in computer-aided design (CABPnverges when the lateral distance between the excitation and
tools. It is well known [4], [5] that these Green’s functiondhe observation points becomes small. In Section lll, the kernel
can be easily computed in the spectral domain; however, th@CtionG., is treated , whereas in Section IV the Green'’s func-
inverse Fourier transform in two dimensions and the inver§@n Gv is considered. Finally, in Section V, the theory is illus-
Hankel transform in three dimensions lead to Sommerfeld-tyfj@ted on a representative microstrip substrate and the Shanks
of integrals, requiring complex and time-consuming integratidfnsform is proposed as an effective means to accelerate the
schemes. Therefore, a number of faster alternative approachi@élal series.
has been proposed, such as, e.g., the fast Hankel transform
[6] and the complex image technique [7], [8]. In [9]-[11], a
new technique is proposed to calculate the Green'’s function
by using perfectly matched layers (PMLs) [12]-[14], to obtain
a closed waveguide configuration. The PML then mimics an Consider the configuration shown in Fig. 1, consisting of a
open structure, while an efficient problem description in ternigicrostrip substrate with permittivity,, permeability;.,., and
of a set of discrete modes of the closed waveguide containittidcknessd. Above the substrate, an air region is present with
the PML is possible. thicknessd,,;,, terminated by a PML with thicknes& ., and
with material parameters, andog [9]. In [11], it is shown that,
by stretching the coordinates, the air region can be combined
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PEC 2) The Berenger modes, for which most of the modal field

Ky, Gy Idpm is concentrated in the PML, whilst a strong attenuation is

g found in the microstrip substrate. This is the case when
air

€or My z |Im(~,.)|d is large, so that (3) can be written as
- d% ,y Simofi Y, — Yo (5)
X y e = m.
Fig. 1. Microstrip configuration. Furthermore, analytic solutions were derived in [15] for the

propagation constants of the leaky and Berenger modes in the
. For the TE eigenmode profiles, the relevant field componegtiasi-static limit. The assumption that/copo < /3 then al-
E, is given by lows the approximatiory, =~ v = +j3. In the TE case, the
~ propagation constants for the leaky modes are approximated by
Argsin(y,.2) sin (fyod) e=IBY,

1 P — 1 nmw
L I e
By 2)={ <734 S A
Arpgsin(~,d) sin [fyo (J+ d— 7)} e~iBY, ' (2n+ D)m i 1 log (2n+ D)m =1
d<z<did 2d d "7 kody/e, =1 '
alr (1) (6)
Ionri;hgeiv'Ll\r/]I s;/genmode profiles, the relevant field compone‘}tOr the Berenger modes, one finds
Y
1 =1 2n+ )w
([ Arm7yr . N g, ——lo ‘ ‘ Aty £ 1
" weoer sin(y,z) COS(’Yod> e iPY, o % 2jd Sl +1 2d pr 7
Vs PRl ey SIS
ATy i ~ 0 Cpr —
Ey(y, z) = —ﬂ cot (fyod) sin(vy,.d) 2) 7
Jwepey
_Sin[% ((i—i—d— 7)} o—iBy For the TM- polarization, the modal constants of the leaky
’ modes are approximately equal to
L d < z < d+ dai-
1 e —1 (2n+1)m
For both polarizations, the constastrepresents a normaliza- R 2jd log e +1 T2 ®
tion factor andy,. and~, satisfy a dispersion relation of the form ’
whereas for the Berenger modes
Y, coi(,d) = Yo cot0d ) ®) L e 1]
t0 %~ log| T+ ©
with 73 = k3 — 2,92 = Keppn — B2, k3 = weopro, and Zjd e d

with Y;,7 TTF = fy,,/jwuou,, andY07 TR — Wo/jwuo for the TE

caseY,, rm = jweoer/7r aNdYy, rat = jweo/vo forthe TM 1. CoNVERGENCEBEHAVIOR OF THE MODAL SERIES FORG.
case. To assure propagation in thg direction with a bounded
mode profile, the propagation constants must dBey3) > 0
andIm(f) < 0. Branch cuts are then chosen so tRat~y, ),
Re(vo) > 0 andlm(v,), im(vyo) > 0.

In [15], it was shown that, when the PML acts as a stro
absorber, the dispersion relation (3) allows us to distinguish
tween two sets of modes as follows.

1) The leaky modes of the microstrip substrate, for whicky , (4, 2: ¢/, 2/)

most of the modal field is concentrated in the mi- 00

By invoking the reciprocity theorem, the Green’s function
Galy, z; 4/, #) for aline source afy’, »') carrying anz-ori-
ented current can now be expressed as a series of TE modes. For
source lying in or on top of the microstrip substrdte( 2’ <
, the Green’s function in or on top of the substraéteq( z < d)
can be written as

crostrip substrate, whilst the PML strongly attenuates= — w—/;O
the field. This corresponds to the assumption that  »=1 £
|Re(vo)|dprmLoo/wep is large and that sin(7y,.2) Sin(%zf)@—j,ﬁly—y’l
- L4 GYERYE R R sn@yd) _ YP-YPa ’
Tm(0)] < dpwr, e (o)l o T °2Y02 — %?YO”T SmQAZ - OYOZ 5 cos(27y,d)
0 dair + dpm1.Ko o 0< 2z, 2 <d. (10)

Under these assumptions and Ri(o) > 0, (3) can be  gimjlar expressions can be found for excitation and/or observa-
rewritten as tion points lying in the air region.
Y.+ Y, The series (10) clearly converges exponentially whenever ex-

e = () citation and observation poi I d iry e
Yy, - Y. citation and observation points are well separated iy C-
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tion, so thafy — +/| is sufficiently large. At large distances, thestill allows the presence of a singularity wheneyer ¢’ and

main contributors to the modal series are the surface waveszof 2’. This singularity disappears far# -’ due to the oscil-

the microwave structure, since these are guided without attéating factor. As for the contribution of the Berenger modes to

uation(Im(3) = 0). However, for sufficiently small distancesthe Green’s function, the assumptions leading to (5) yield

|y —14'|, exponential convergence is lost, and the series becomes

slowly converging or even divergent, making it a less efficient GA (v, 24/, 2)

way to calculate the Green’s function. wpto sin(y,2) sin(y,.2")
Itis, therefore, instructive to study the convergence behavior =~ ~ Z B sin?(v,.d)

of G4 for small |y — ¢/|. We start by subdividing the modal n=t . ' )

series (10) into a contributio&,” of the leaky modes and a sin’ (’Vod) e~ifly=vl

COﬂtI‘IbUtIOI’]G(Q) of the Berenger modes. Whether a mode con- sin(vod )’

tributes to a Ieaky mode series or to the Berenger mode series ivo

depends on whether its modal constant is best approximatedip following asymptotic behavior is observed foe »' = d:
the analytical expressions (6) or (7). For each contribution, an

0<z 2 <d (14

J_ sin2"/0(~i _
270

asymptotic series can be constructed for largé/hen applying G ( d;y, d)
the assumptions for the leaky modes that led to (4), one obtams (>0 wiop o,
for the leaky mode part for the Green’s function Z 3 S ; = e IRyl
oo (d- st
) wito sin % ) sin(y, 2 )= v S
G (y’ % y 7 Z sin 2+,.d sin?(y,d) ~ Hr 7& 1 15
ur T e T g I S . (15)
O <z 2 <d (11) Z J@HOT0 - e=iBly=y'l
2
For the contribution of the leaky modes to the Green'’s function n=t Foler 1) (d ”T>
at the substrate—air interface, which is in fact the worst case with e = 1.

respect to convergence, this series behaves as An asymptotic expression can also be given for the excitation

and observation point not lying on the substrate—air interface,

(1) o
Ca (& s d) yielding in the regiord) < z, 2’ < d

S “Hokr —iBly—y'l
> e @y e af o
2 por (€ phr—1) ? GA (y7 Y, Z)
= i = 18 (d+ fpistsst) . oo s
pr # 1 Z _ izt —2d) Hotts:
” r(erpr—1)
~3 N (12) sl (12— 1)8 (d - feefeetssl))
Z - hadallli ; e~iBly=v'l e—98ly=y'l e # 1
=k 1) (d+ A ~e ’.
\ Hr = ZCJ"‘/O (z+2'—2d) JWH0T0 C—j,8|y—y’|7
. . = k2 (er (d—
These asymptotic expressions show thatyfot4 1, the leaky ' oler = 1) I
mode series behaves as the harmonic sériggl/n) in the L pr = 1.

absence of exponential damping whea +/. This series is well (16)
known to be divergent. This is not unexpected, &sedy — v/'|
singularity must be obtained for small values|gf— ¢/|. For
pr = 1,the series behaves a3, n, also clearly divergentin the
absence of exponential damping. When= 1, an asymptotic
expression can also be derived for the excitation and observatit

point not lying on the substrate—air interface, yielding

This clearly shows that the Berenger mode part of the series has
an additional exponential damping, guaranteeing convergence
whenever the excitation and/or observation point is lying in the
glonO < z, 2 < d, and not on the interface.

IV. CONVERGENCEBEHAVIOR OF THE MODAL SERIES FORGY/

Gy, 2 4/, 2)

In a similar fashion as faf 4, the reciprocity theorem can be

5 i—e—j(@"“)”(”z'—w)/?d) 2, (z42"-2d)/d invoked to construct the Green's functi6h (y, z; ', 2) for
— aline charge as a series of TE and TM modes. For a source lying
P in the microstrip substrate, i.e., for< z, 2’ < d, the Green’s
. JWHOYr eIl A < d, function in the substrate can be written as (17), shown at the
k3(e. — 1) (d + ﬁ) bottom of the following page. Similar expressions can be found
(13) for excitation and/or observation points lying in the air region.

Concerning the convergence behavior of the modal series, the
The series shows an additional oscillating factor and a dampisgme observations hold as in the previous section. Better insight
factor whenever excitation or observation point are not placeen be gained by studying the TE and TM series separately and
on the substrate—air interface. Although the damping factor iny subdividing both of them in a series belonging to the leaky
creases the convergence for small valuel,ef 4|, the series modes and a series describing the contribution of the Berenger
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modes. Concerning the convergence of the TE part, similar éencerning the Berenger mode part, the assumptions leading to
pressions can be derived as the ones found in the previous £6¢yield

tion, provided the extr@2y term in the denominator is taken .,

into account. Foy:,,. = 1, for example, the following asymp- Gy, ¥ 2y, 2)

totic expression can be derived for the leaky mode part in the B > 72 sin(y,.z)sin(y,2')

region0 < z, 2’ < d: ~ Z BPwegel SinQ(%d)

. 't — a8l —as
sin? (’yod) e—IBly—y'|

1
G%’,)TE(yv 2y, ) 0<z 7 <d (22

oo (242" —2d)/d CZ—{- Sin2"/0(~i _ COEZ(WO&) ?
~ Z e_j((2n+1)7r(z+z’—2d)/2d) 29, 2"/0- - JVr€r | |
oy’ kov/(e-—1) At the substrate—air interface and for largehis series behaves
j as
. JWHo C_j,8|y_y,| (18)
ok (e — 1)(d+ L) ' NN - 1 il
rivo\tr = 2 : N '
Kieli] V,TM(yv U, ) nz::l /3&)60(62 — 1) d+ kSET’(SEMZT_ll))
On the other hand, the Berenger part behaves as I ler 23)

Similar to the TE series, the Berenger mode part of the series

G2 T . X . o
"TE(y v ) has additional exponential damping whenever excitation and/or

( i _ ivol(ztz'—2d) witopty observation point are lying in the region< z, 2’ < d, and not
5 r(erpir—1 i
n=1 (u2—-1)33 (d - %) on the interface
2
e—iBlu=v'l | G%Z)Tl\q(y, 2y, 2
) = . > o (2’ —2d) 1 e JBlu—v|
. 7 ] ~ k 0 Z A
Z - C]"/O(Z-i'z —2d) JWwWho = Z e /3@60(62 — 1) d_’_ kSGT(ErHrfl) ’
n=1 kg(er = 1)yw (d - ﬁ) n=t Jvrv (2-1)
/ 0< 22 <d. (24)
{8l pr = 1.
19)
V. EXAMPLE

Let us now further concentrate on the TM contribution. When |, order to illustrate the theory developed in the previous sec-

applying the assumptions for the leaky modes that led to (§hns, we consider a microstrip-PML configuration with= 9
one obtains for the leaky mode part mm, da;: = 5 mm, anddpyr, = 3.5 mm at 12 GHz. A strongly
absorbing PML is obtained fory = 10 andog/weq = 8. The
GS)TM(y? 2y, 7)) modal series are then constructed for the Green’s functions
e 5 ) ) P and G of a microstrip substrate with. = 3 andp,. = 1.
72 sin(yez)sin(y,2 e IPlv=vl : -
~ Z 3 5 o d e ) In [15], the exact Iocatlons_ of the prt_)pagatlon constants of the
i Pwcs 44 s+ TE and TM modes were given for this substrate, as well as the
0< 27 <d. (20) eigenvalues found with the approximate analytical expressions,
allowing us to distinguish between zeros pertaining to leaky and

At the substrate—air interface, the series of leaky modes behaldgsenger modes.
as

A. Behavior of the Modal Series’ Coefficients

L ©o 1 e—iBly—y'| In Figs. 2-9, the convergence behavior of the coefficients is
G%’,)TM(?J? diy/ d) ~ Y — 3 > 1) 4 #m 1 shownforthe different modal series that compGsgandGy,
wt Peeld 1) & T jw(@-L)  assuming thaly — ¢/| = 0. In Figs. 2 and 3, it is shown that
(21) the real and imaginary parts of the coefficients for the leaky

sin(7y,. TRZ) sin(fy,,yTEz’)e_j'BW ly—y/]

2 2 . 2 2 d
_ Yore—Yire sin2yveoed)  Yore—Y e d cos(2 d)
2 re Yo, TEY0, TESr  27r,TE Yie 2 ¥ TE

oo
o 2 :WNO
GV(y,Z; y,z ) = /33 4 SYZ2__4y?
1 PTE H_T—'_d o,TE "1~ TE

o0 2 . . ’ — i B |y —1 4
Vi M sin( vy, ra2) sin(y, oy 2’ )e ~IFmaly =yl
RY] 2 R 2 2 ~
1 /3%1\,1(4)6062 d + d YO,TM+Y7*,TM _ Yo, rm¥r,oMéer—Yr, TM Y0, TM sin(2v,,tmd) _ YO,TM_YT,TI\I d COS(2 d)
"= €r Eh . 2Y, TMYo, T™ 29, TMEr Y:im 2 Tr,TM
17
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= contributing to 035 : . —
G a(y, d; y, d) approach the asymptotic series (12) for suffi- 03 sy oy |
ciently largen (difference< 1% for n > 8). The same holds 025
when the observation point is chosen inside the substrate fc _
z = 2o = 7 mm, and the asymptotic expression (13) is used. In E 02
Figs. 4 and 5, the oscillatory character is clearly visible and the, %13
series increases less than linear with g 0.1
In Figs. 6 and 7, the asymptotic behavior is illustrated for 0.05
the real and imaginary parts of the coefficients for the Berenge 0 MW
mode serieﬁf)(y, iy, d) =57, AEE)TE contributing to 005
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Gy, d; y, d), exhibiting a linear behavior for large, fol-
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Concerning the series contributing®, (v, 2, v/, 2’), sim-
ilar observations can be made. Let us not expand on this
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Fig. 9. Convergence behavior of the imaginary part of the coefficients in titég. 10. Green’s functiol? 4(y, d; 0, d) at the microstrip—air interface.
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further and simply show, e.g., the asymptotic behavior for the zgg | R W
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Figs. 8 and 9, corresponding to thé: behavior of (21) for large 600 | ]
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# terms

B. Calculation of the Green’s Functions and Series
Acceleration by Shanks Transformation

Sections Il and IV clearly showed that the modal expansions =
. . . 0.001 0.01 0.1 1 10

for the Green’s functiong&74 and Gy are rapidly converging Koy
whenever excitation and observation points are well separated in
they direction (larggy—1/'|), but that convergence tends to slowsig. 11. Number of terms needed in the modal series contributing to
down or to get lost when the distange— 3/| decreases. This is Ga(y, 4; 0, ).
due to the following. For smail, the series of leaky modes con-
sists of a number of modes that are either guided or only wealdycomparison is made between a classical calculation scheme,
evanescent. For increasingthe modes in the leaky modes andvhich relies on a spectral domain approach and inverse
Berenger modes series become more and more evanescentggdier transform to the spatial domain [4], [5], and the modal
that only a small number of modes determines the field behavissries approach. Both direct calculation of the leaky mode
for large|y — ¥/|. However, for decreasiny — /| distances and Berenger mode series compos(#g and the use of the
an increasing number of evanescent high-order is contributi8panks transform to accelerate convergence of both series
significantly to the Green’s function series. However, the effare considered. With the number of modes available in the
ciency of the modal series can be increased by well-known gfatabase, direct computation of the two modal series gives
ries acceleration techniques. We will show that the convergeraeceptable results fdgy > 0.1, whereas with the use of series
speed can be drastically increased by applying the Shanks tratiseleration there is a good agreement with the spectral domain
form [16]. Since this algorithm is welldocumented in literatureapproach for values dfyy up to 0.01. The effect of the Shanks
we will not elaborate on its implementation details. Since eagtansform can further be clarified by considering the number of
part that composes the Green’s functi@p or Gy- clearly has a terms used in the different series to obtain a relative accuracy
distinct convergence behavior, the acceleration technique is 8p-10~7, as shown in Fig. 11. It is clear that the number of
plied to each separate series with TE or TM contributions froterms needed for convergence is larger in a direct computation
the Berenger or leaky modes. scheme than whenever Shanks acceleration is applied. This

Let us now investigate the calculation of the acceleratéslespecially the case for small valuesigfy. For koy < 0.1
modal series forG.4 and Gy, by applying (10) and (17). both the number of leaky and Berenger modes available in
Special attention is paid to the behavior of the series for sméie database are not sufficient to obtain the required accuracy.
values ofjy — ¢/|, thereby examining the statements made iWhen making use of the Shanks transform, this phenomenon is
Sections Il and IV and checking the effect of series accabnly seen forkgy < 0.01.
eration by the Shanks transform. Before evaluating and Let us now consider the observation point inside the substrate
Gy, the propagation constants and normalization factors wetez = 2o = 7 mm. G4 (y, 20; 0, d) is depicted in Fig. 12.
computed for 359 leaky modes and 961 Berenger modes in thethis case, the Green’s function does not have a singular be-
TE case and for 323 leaky modes and 948 Berenger modehéavior fory = 4/, and the modal series calculated with Shanks
the TM case. Results are stored in a database and can be reasedleration agrees well with the results of the spectral domain
for all calculations of7 4 andG'y- for one particular substrate. approach. However, diverging results are still obtained with di-

In Fig. 10, the amplitude of the Green’s functiorrect calculation of the modal series. This is further illustrated in
Ga(y, d; 0, d) on the microstrip—air interface is shownlFig. 13. As shown by (16), the additional exponential damping
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Fig. 14. Green's functio#4(y, zo, 0, zo) for excitation and observation Fig. 17. Number of terms needed in the modal series contributing to
point inside the substrate. Gv(y, d; 0, d).

factor for » # d leads to a series of Berenger modes that coshows that the leaky mode series does not provided a6cu-

verges much faster for small values kfy than forz = d. racy forkqy < 0.01, even when applying Shanks acceleration.

However, the number of leaky modes available in the databa3e the other hand, the series of Berenger series remains conver-

remain insufficient to obtain an accuracy of TOwhen direct gent, as elucidated by (16).

computation is applied. Indeed, the additional damping obtainedSimilar effects can now be seen for the modal series com-

in (13) is not sufficient to allow fast convergence of this series. posingGh-. Of course, because of the presence of the additional

any case, using Shanks transform drastically reduces the numibgi? in combination with the fact that. # 1, the series com-

of modes needed to obtain convergence. posing Gy will in general behave better than the ones com-
Let us finally observe the modal series behavior for excit@osingG 4, especially when,. = 1. This is, for example, il-

tion and observation points both at= 2’ = zg, leading to a lustrated in Fig. 16, wheré'(y, d; 0, d) at the microstrip—air

singular behavior of7 4 (y, 2o, 0, o) for y = 0. In Fig. 14, no interface is shown. Fig. 17 shows that the use of Shanks acceler-

noticeable difference is seen between the spectral domain apen on the four different series composiig (y, d; 0, d) as-

proach and the modal technique with Shanks acceleration $mres an accuracy of 10 for kyy > 0.01, taking into account

G a(y, 20; 0, 20) calculated forkoy > 0.001. However, Fig. 15 the number of TE and TM modes available in the database.
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Fig. 20. Green’s functioiG'y (y, zo; 0, zo) for excitation and observation

point inside the substrate.

For the observation point inside the substrate at 2z =

v (Y, z0; 0, 20)-

series in the TE case. This can be explained by considering (19).
This expression shows that the series converges as

1
Z n(zt+2’—3d)/d

which is a convergent series whenew@r ' are smaller thad.

On the other hand, the leaky mode series in the TM case, how-
ever, does not acquire the prescribed accuracy for small values
of koy.

VI. CONCLUSION
to

The Green’s function&,; andGy were calculated for a 2-D
microstrip substrate by placing the substrate into a closed PML
waveguide and by performing a modal expansion in Berenger
and leaky modes. Itis shown that each series compdsjpgnd
Gy has a particular convergence behavior, depending on the po-
sition of the excitation and the observation points, the magnetic
and dielectric contrasts in the substrate, and the type of modes
under consideration. It is, therefore, necessary to accelerate the
convergence of each separate series of modes by applying the
Shanks transform. This clearly leads to a more efficient calcula-
tion of the Green'’s functions than by direct computation of the
modal series, as shown by a representative example. The Shanks
transform leads to accurate results when excitation and obser-
vation points approach each other, even for small distances of
the order ofA/100. The technique, however, does not provide
correct results for the self-patch contribution. There, a static ap-
proximation, exhibiting the correct singular behavior, could be
used to evaluate the Green’s functions efficiently.

Because of the exponential damping of the modes, only a
very small number of mode terms is required when the exci-

7 mm, good agreement is seen 18k (v, zo; 0, d) whenever tation and the observation points are separated by more than
koy > 0.001, as shown in Fig. 18. However, Fig. 19 shows that/5, resulting in a very efficient method. Compared to the com-
direct computation does not allow us to obtain a1@ccuracy plex image method, our technique is theoretically founded and

in the range.001 < koy < 0.01. In Fig. 20,Gv (y, zo; 0, 20)
is shown, for excitation and observation points both at 2’ =

probably more efficient in 2-D since the complex image method
yields an expansion in Hankel functions. For the moment, re-

29, leading to a singular behavior fgr= 0. On the one hand, search is underway to extend the technique to three-dimensional
both series of Berenger modes remain convergent, as see(3iD). A drawback of the technique in 3-D is the fact that our
Fig. 21, because of the additional exponential damping as foumodal series then requires Hankel functions, in contrast to the
in (16) and (24). Convergence is also seen for the leaky mogdd complex image method.
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