
1696 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 50, NO. 7, JULY 2002

Convergence Behavior and Acceleration of the
Berenger and Leaky Modes Series Composing

the 2-D Green’s Function for the
Microstrip Substrate

Hendrik Rogier, Member, IEEE,and Daniël De Zutter, Fellow, IEEE

Abstract—The Green’s functions and are calcu-
lated for a two-dimensional microstrip substrate by placing
the substrate into a closed perfectly-matched-layer waveguide
and by performing a modal expansion in Berenger and leaky
modes. It is shown that each series composing and has a
particular convergence behavior when considering small lateral
distances between the excitation and the observation points. It
is then demonstrated that, by applying the Shanks transform to
accelerate each series separately, a more efficient calculation for
the Green’s functions can be obtained than by direct computation
of the series. The theory is illustrated by means of a representative
example.

Index Terms—Green’s functions for multilayered media, inte-
gral equation techniques, perfectly matched layers.

I. INTRODUCTION

A LTHOUGH the issue has been studied for quite a number
of years, the calculation of the Green’s functions

and of a multilayered medium stills remains a difficult
task. Yet, these kernel functions, associated with the vector and
scalar potential of the problem, play a very important role in the
so-called mixed-potential integral equation descriptions [1]–[3]
of planar circuits, often used in computer-aided design (CAD)
tools. It is well known [4], [5] that these Green’s functions
can be easily computed in the spectral domain; however, the
inverse Fourier transform in two dimensions and the inverse
Hankel transform in three dimensions lead to Sommerfeld-type
of integrals, requiring complex and time-consuming integration
schemes. Therefore, a number of faster alternative approaches
has been proposed, such as, e.g., the fast Hankel transform
[6] and the complex image technique [7], [8]. In [9]–[11], a
new technique is proposed to calculate the Green’s function
by using perfectly matched layers (PMLs) [12]–[14], to obtain
a closed waveguide configuration. The PML then mimics an
open structure, while an efficient problem description in terms
of a set of discrete modes of the closed waveguide containing
the PML is possible.
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In [9]–[11], this approach is used to construct the Green’s
function for a two-dimensional (2-D) configuration for the
TE polarization. In this paper, we will consider both TE and TM
polarizations and derive modal series for the kernel functions

and , often used in mixed-potential integral equation
approaches for multilayered structures. An important issue con-
cerning the use of modal series involves the number of modes
needed to assure convergence of the series with a prescribed ac-
curacy. The contributions of this paper relate to this convergence
issue. First, a thorough convergence study is made on all modal
series composing the Green’s functions and . Second,
the results of this study are then used to provide a series accel-
eration scheme by means of the Shanks transform.

In order not to complicate the matter too much, we will focus
on a simple microstrip structure, and we chose a 2-D configura-
tion. In order to develop our theory, we will make use of results
obtained in [15], where it was shown that one can distinguish
between leaky modes and Berenger modes in waveguides cre-
ated by covering an open microstrip substrate with a PML. We
start by briefly repeating this theory in Section II. The main part
of the paper involves a thorough study on if, and how, the series
converges when the lateral distance between the excitation and
the observation points becomes small. In Section III, the kernel
function is treated , whereas in Section IV the Green’s func-
tion is considered. Finally, in Section V, the theory is illus-
trated on a representative microstrip substrate and the Shanks
transform is proposed as an effective means to accelerate the
modal series.

II. M ODAL EXPANSION FOR A MICROSTRIPSUBSTRATE

TERMINATED BY A PML

Consider the configuration shown in Fig. 1, consisting of a
microstrip substrate with permittivity , permeability , and
thickness . Above the substrate, an air region is present with
thickness , terminated by a PML with thickness and
with material parameters and [9]. In [11], it is shown that,
by stretching the coordinates, the air region can be combined
with the PML to form a single air layer with complex thickness

. This allows a relatively
simple modal analysis of the waveguide under consideration.

We are interested in the TE and TM modes of the configu-
ration, propagating in thedirection with propagation constant
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Fig. 1. Microstrip configuration.

. For the TE eigenmode profiles, the relevant field component
is given by

(1)
For the TM eigenmode profiles, the relevant field component

is given by

(2)

For both polarizations, the constantrepresents a normaliza-
tion factor and and satisfy a dispersion relation of the form

(3)

with , , , and
with and for the TE
case, and for the TM
case. To assure propagation in thedirection with a bounded
mode profile, the propagation constants must obey
and . Branch cuts are then chosen so that ,

and , .
In [15], it was shown that, when the PML acts as a strong

absorber, the dispersion relation (3) allows us to distinguish be-
tween two sets of modes as follows.

1) The leaky modes of the microstrip substrate, for which
most of the modal field is concentrated in the mi-
crostrip substrate, whilst the PML strongly attenuates
the field. This corresponds to the assumption that

is large and that

Under these assumptions and for , (3) can be
rewritten as

(4)

2) The Berenger modes, for which most of the modal field
is concentrated in the PML, whilst a strong attenuation is
found in the microstrip substrate. This is the case when

is large, so that (3) can be written as

(5)

Furthermore, analytic solutions were derived in [15] for the
propagation constants of the leaky and Berenger modes in the
quasi-static limit. The assumption that then al-
lows the approximation . In the TE case, the
propagation constants for the leaky modes are approximated by

(6)

For the Berenger modes, one finds

(7)

For the TM- polarization, the modal constants of the leaky
modes are approximately equal to

(8)

whereas for the Berenger modes

(9)

III. CONVERGENCEBEHAVIOR OF THEMODAL SERIES FOR

By invoking the reciprocity theorem, the Green’s function
for a line source at carrying an -ori-

ented current can now be expressed as a series of TE modes. For
a source lying in or on top of the microstrip substrate (
), the Green’s function in or on top of the substrate ( )

can be written as

(10)

Similar expressions can be found for excitation and/or observa-
tion points lying in the air region.

The series (10) clearly converges exponentially whenever ex-
citation and observation points are well separated in thedirec-
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tion, so that is sufficiently large. At large distances, the
main contributors to the modal series are the surface waves of
the microwave structure, since these are guided without atten-
uation . However, for sufficiently small distances

, exponential convergence is lost, and the series becomes
slowly converging or even divergent, making it a less efficient
way to calculate the Green’s function.

It is, therefore, instructive to study the convergence behavior
of for small . We start by subdividing the modal
series (10) into a contribution of the leaky modes and a
contribution of the Berenger modes. Whether a mode con-
tributes to a leaky mode series or to the Berenger mode series
depends on whether its modal constant is best approximated by
the analytical expressions (6) or (7). For each contribution, an
asymptotic series can be constructed for large. When applying
the assumptions for the leaky modes that led to (4), one obtains
for the leaky mode part for the Green’s function

(11)

For the contribution of the leaky modes to the Green’s function
at the substrate–air interface, which is in fact the worst case with
respect to convergence, this series behaves as

(12)

These asymptotic expressions show that, for , the leaky
mode series behaves as the harmonic series in the
absence of exponential damping when . This series is well
known to be divergent. This is not unexpected, as a
singularity must be obtained for small values of . For

, the series behaves as , also clearly divergent in the
absence of exponential damping. When , an asymptotic
expression can also be derived for the excitation and observation
point not lying on the substrate–air interface, yielding

(13)

The series shows an additional oscillating factor and a damping
factor whenever excitation or observation point are not placed
on the substrate–air interface. Although the damping factor in-
creases the convergence for small values of , the series

still allows the presence of a singularity whenever and
. This singularity disappears for due to the oscil-

lating factor. As for the contribution of the Berenger modes to
the Green’s function, the assumptions leading to (5) yield

(14)

The following asymptotic behavior is observed for :

(15)

An asymptotic expression can also be given for the excitation
and observation point not lying on the substrate–air interface,
yielding in the region

(16)

This clearly shows that the Berenger mode part of the series has
an additional exponential damping, guaranteeing convergence
whenever the excitation and/or observation point is lying in the
region , and not on the interface.

IV. CONVERGENCEBEHAVIOR OF THEMODAL SERIES FOR

In a similar fashion as for , the reciprocity theorem can be
invoked to construct the Green’s function for
a line charge as a series of TE and TM modes. For a source lying
in the microstrip substrate, i.e., for , the Green’s
function in the substrate can be written as (17), shown at the
bottom of the following page. Similar expressions can be found
for excitation and/or observation points lying in the air region.

Concerning the convergence behavior of the modal series, the
same observations hold as in the previous section. Better insight
can be gained by studying the TE and TM series separately and
by subdividing both of them in a series belonging to the leaky
modes and a series describing the contribution of the Berenger



ROGIER AND DE ZUTTER: CONVERGENCE BEHAVIOR AND ACCELERATION OF THE BERENGER AND LEAKY MODES SERIES 1699

modes. Concerning the convergence of the TE part, similar ex-
pressions can be derived as the ones found in the previous sec-
tion, provided the extra term in the denominator is taken
into account. For , for example, the following asymp-
totic expression can be derived for the leaky mode part in the
region :

(18)

On the other hand, the Berenger part behaves as

(19)

Let us now further concentrate on the TM contribution. When
applying the assumptions for the leaky modes that led to (4),
one obtains for the leaky mode part

(20)

At the substrate–air interface, the series of leaky modes behaves
as

(21)

Concerning the Berenger mode part, the assumptions leading to
(5) yield

(22)

At the substrate–air interface and for large, this series behaves
as

(23)

Similar to the TE series, the Berenger mode part of the series
has additional exponential damping whenever excitation and/or
observation point are lying in the region , and not
on the interface

(24)

V. EXAMPLE

In order to illustrate the theory developed in the previous sec-
tions, we consider a microstrip-PML configuration with
mm, mm, and mm at 12 GHz. A strongly
absorbing PML is obtained for and . The
modal series are then constructed for the Green’s functions
and of a microstrip substrate with and .
In [15], the exact locations of the propagation constants of the
TE and TM modes were given for this substrate, as well as the
eigenvalues found with the approximate analytical expressions,
allowing us to distinguish between zeros pertaining to leaky and
Berenger modes.

A. Behavior of the Modal Series’ Coefficients

In Figs. 2–9, the convergence behavior of the coefficients is
shown for the different modal series that composeand ,
assuming that . In Figs. 2 and 3, it is shown that
the real and imaginary parts of the coefficients for the leaky

(17)
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Fig. 2. Convergence behavior of the real part of the coefficients in the leaky
mode series forG (y; d; y; d).

Fig. 3. Convergence behavior of the imaginary part of the coefficients in the
leaky mode series forG (y; d; y; d).

Fig. 4. Convergence behavior of the real part of the coefficients in the leaky
mode series forG (y; z ; y; d).

mode series contributing to
approach the asymptotic series (12) for suffi-

ciently large (difference 1% for ). The same holds
when the observation point is chosen inside the substrate for

mm, and the asymptotic expression (13) is used. In
Figs. 4 and 5, the oscillatory character is clearly visible and the
series increases less than linear with.

In Figs. 6 and 7, the asymptotic behavior is illustrated for
the real and imaginary parts of the coefficients for the Berenger
mode series contributing to

, exhibiting a linear behavior for large, fol-
lowing (15).

Concerning the series contributing to , sim-
ilar observations can be made. Let us not expand on this any

Fig. 5. Convergence behavior of the imaginary part of the coefficients in the
leaky mode series forG (y; z ; y; d).

Fig. 6. Convergence behavior of the real part of the coefficients in the Berenger
mode series forG (y; d; y; d).

Fig. 7. Convergence behavior of the imaginary part of the coefficients in the
Berenger mode series forG (y; d; y; d).

Fig. 8. Convergence behavior of the real part of the coefficients in the leaky
TM mode series forG (y; d; y; d).
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Fig. 9. Convergence behavior of the imaginary part of the coefficients in the
leaky TM mode series forG (y; d; y; d).

further and simply show, e.g., the asymptotic behavior for the
leaky TM mode series in
Figs. 8 and 9, corresponding to the behavior of (21) for large

.

B. Calculation of the Green’s Functions and Series
Acceleration by Shanks Transformation

Sections III and IV clearly showed that the modal expansions
for the Green’s functions and are rapidly converging
whenever excitation and observation points are well separated in
the direction (large ), but that convergence tends to slow
down or to get lost when the distance decreases. This is
due to the following. For small, the series of leaky modes con-
sists of a number of modes that are either guided or only weakly
evanescent. For increasing, the modes in the leaky modes and
Berenger modes series become more and more evanescent, so
that only a small number of modes determines the field behavior
for large . However, for decreasing distances
an increasing number of evanescent high-order is contributing
significantly to the Green’s function series. However, the effi-
ciency of the modal series can be increased by well-known se-
ries acceleration techniques. We will show that the convergence
speed can be drastically increased by applying the Shanks trans-
form [16]. Since this algorithm is welldocumented in literature,
we will not elaborate on its implementation details. Since each
part that composes the Green’s function or clearly has a
distinct convergence behavior, the acceleration technique is ap-
plied to each separate series with TE or TM contributions from
the Berenger or leaky modes.

Let us now investigate the calculation of the accelerated
modal series for and , by applying (10) and (17).
Special attention is paid to the behavior of the series for small
values of , thereby examining the statements made in
Sections III and IV and checking the effect of series accel-
eration by the Shanks transform. Before evaluating and

, the propagation constants and normalization factors were
computed for 359 leaky modes and 961 Berenger modes in the
TE case and for 323 leaky modes and 948 Berenger modes in
the TM case. Results are stored in a database and can be reused
for all calculations of and for one particular substrate.

In Fig. 10, the amplitude of the Green’s function
on the microstrip–air interface is shown.

Fig. 10. Green’s functionG (y; d; 0; d) at the microstrip–air interface.

Fig. 11. Number of terms needed in the modal series contributing to
G (y; d; 0; d).

A comparison is made between a classical calculation scheme,
which relies on a spectral domain approach and inverse
Fourier transform to the spatial domain [4], [5], and the modal
series approach. Both direct calculation of the leaky mode
and Berenger mode series composing and the use of the
Shanks transform to accelerate convergence of both series
are considered. With the number of modes available in the
database, direct computation of the two modal series gives
acceptable results for , whereas with the use of series
acceleration there is a good agreement with the spectral domain
approach for values of up to 0.01. The effect of the Shanks
transform can further be clarified by considering the number of
terms used in the different series to obtain a relative accuracy
of 10 , as shown in Fig. 11. It is clear that the number of
terms needed for convergence is larger in a direct computation
scheme than whenever Shanks acceleration is applied. This
is especially the case for small values of . For
both the number of leaky and Berenger modes available in
the database are not sufficient to obtain the required accuracy.
When making use of the Shanks transform, this phenomenon is
only seen for .

Let us now consider the observation point inside the substrate
at mm. is depicted in Fig. 12.
In this case, the Green’s function does not have a singular be-
havior for , and the modal series calculated with Shanks
acceleration agrees well with the results of the spectral domain
approach. However, diverging results are still obtained with di-
rect calculation of the modal series. This is further illustrated in
Fig. 13. As shown by (16), the additional exponential damping
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Fig. 12. Green’s functionG (y; z ; 0; d) for a source at the interface and
the observation point inside the substrate.

Fig. 13. Number of terms needed in the modal series contributing to
G (y; z ; 0; d).

Fig. 14. Green’s functionG (y; z ; 0; z ) for excitation and observation
point inside the substrate.

factor for leads to a series of Berenger modes that con-
verges much faster for small values of than for .
However, the number of leaky modes available in the database
remain insufficient to obtain an accuracy of 10when direct
computation is applied. Indeed, the additional damping obtained
in (13) is not sufficient to allow fast convergence of this series. In
any case, using Shanks transform drastically reduces the number
of modes needed to obtain convergence.

Let us finally observe the modal series behavior for excita-
tion and observation points both at , leading to a
singular behavior of for . In Fig. 14, no
noticeable difference is seen between the spectral domain ap-
proach and the modal technique with Shanks acceleration for

calculated for . However, Fig. 15

Fig. 15. Number of terms needed in the modal series contributing to
G (y; z ; 0; z ).

Fig. 16. Green’s functionG (y; d; 0; d) at the microstrip–air interface.

Fig. 17. Number of terms needed in the modal series contributing to
G (y; d; 0; d).

shows that the leaky mode series does not provide a 10accu-
racy for , even when applying Shanks acceleration.
On the other hand, the series of Berenger series remains conver-
gent, as elucidated by (16).

Similar effects can now be seen for the modal series com-
posing . Of course, because of the presence of the additional

in combination with the fact that , the series com-
posing will in general behave better than the ones com-
posing , especially when . This is, for example, il-
lustrated in Fig. 16, where at the microstrip–air
interface is shown. Fig. 17 shows that the use of Shanks acceler-
ation on the four different series composing as-
sures an accuracy of 10 for , taking into account
the number of TE and TM modes available in the database.
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Fig. 18. Green’s functionG (y; z ; 0; d) for a source at the interface and
the observation point inside the substrate.

Fig. 19. Number of terms needed in the modal series contributing to
G (0; y ; 0; d).

Fig. 20. Green’s functionG (y; z ; 0; z ) for excitation and observation
point inside the substrate.

For the observation point inside the substrate at
mm, good agreement is seen for whenever

, as shown in Fig. 18. However, Fig. 19 shows that
direct computation does not allow us to obtain a 10accuracy
in the range . In Fig. 20,
is shown, for excitation and observation points both at

, leading to a singular behavior for . On the one hand,
both series of Berenger modes remain convergent, as seen in
Fig. 21, because of the additional exponential damping as found
in (16) and (24). Convergence is also seen for the leaky mode

Fig. 21. Number of terms needed in the modal series contributing to
G (y; z ; 0; z ).

series in the TE case. This can be explained by considering (19).
This expression shows that the series converges as

which is a convergent series wheneveror are smaller than.
On the other hand, the leaky mode series in the TM case, how-
ever, does not acquire the prescribed accuracy for small values
of .

VI. CONCLUSION

The Green’s functions and were calculated for a 2-D
microstrip substrate by placing the substrate into a closed PML
waveguide and by performing a modal expansion in Berenger
and leaky modes. It is shown that each series composingand

has a particular convergence behavior, depending on the po-
sition of the excitation and the observation points, the magnetic
and dielectric contrasts in the substrate, and the type of modes
under consideration. It is, therefore, necessary to accelerate the
convergence of each separate series of modes by applying the
Shanks transform. This clearly leads to a more efficient calcula-
tion of the Green’s functions than by direct computation of the
modal series, as shown by a representative example. The Shanks
transform leads to accurate results when excitation and obser-
vation points approach each other, even for small distances of
the order of . The technique, however, does not provide
correct results for the self-patch contribution. There, a static ap-
proximation, exhibiting the correct singular behavior, could be
used to evaluate the Green’s functions efficiently.

Because of the exponential damping of the modes, only a
very small number of mode terms is required when the exci-
tation and the observation points are separated by more than

, resulting in a very efficient method. Compared to the com-
plex image method, our technique is theoretically founded and
probably more efficient in 2-D since the complex image method
yields an expansion in Hankel functions. For the moment, re-
search is underway to extend the technique to three-dimensional
(3-D). A drawback of the technique in 3-D is the fact that our
modal series then requires Hankel functions, in contrast to the
3-D complex image method.
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